Regulation of expression of the intestinal oligopeptide transporter (Pept-1) in health and disease

Author:

Adibi Siamak A.1

Affiliation:

1. Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213

Abstract

The abundance of the oligopeptide transporter (Pept-1) in the brush-border membrane of the intestinal epithelium is the central mechanism for regulation of transport of products of protein digestion (dipeptides and tripeptides) and peptidomimetic drugs (for example, β-lactam antibiotics). Within the past few years, there has been substantial progress in identifying the factors controlling this regulation and the mechanisms of their actions. The purpose of this report is to review this progress. The studies of individual substrates and hormones in a human intestinal cell line (Caco-2) have shown that dipeptides, certain amino acids, insulin, and leptin increase and epidermal growth factor and triiodothyronine decrease the membrane population of Pept-1. In the case of dipeptides, epidermal growth factor, and thyroid hormone, there are parallel changes in the gene expression brought about by alteration of transcription and/or stability of Pept-1 mRNA. In contrast, the treatment with insulin and leptin does not induce any alteration in the Pept-1 gene expression, and the mechanism of increased protein expression appears to be increased trafficking from a preformed cytoplasmic pool to the apical membrane. In vivo studies in rats have shown modulation of protein and gene expressions of the intestinal oligopeptide transporter during the day and during development and in nutritional and metabolic alterations, such as high-protein diet, fasting, and diabetes. Patients with intestinal diseases, such as ulcerative colitis, Crohn's disease, and short-bowel syndrome, may have induction of the Pept-1 expression in their colon. Finally, pharmacological studies have shown that the expression of Pept-1 can be upregulated by agents such as 5 fluorouracil and downregulated by agents such as cyclosporine. In conclusion, the above studies have produced a wealth of new information on regulation of a key transporter in the intestine. This information may have useful applications in nutritional and pharmacological treatments, for example, in diabetic patients needing enteral nutrition or in ulcerative colitis patients needing the suppression of the intestinal inflammation.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3