Gut microbiota differs between children with Inflammatory Bowel Disease and healthy siblings in taxonomic and functional composition: a metagenomic analysis

Author:

Knoll Rebecca L.1,Forslund Kristoffer2,Kultima Jens Roat2,Meyer Claudius U.1,Kullmer Ulrike1,Sunagawa Shinichi23,Bork Peer2456,Gehring Stephan1

Affiliation:

1. Children’s Hospital, University Medical Center, Johannes Gutenberg University, Mainz, Germany;

2. European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany;

3. Institute of Microbiology, ETH Zurich, Zurich, Switzerland;

4. Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany;

5. Max Delbrück Centre for Molecular Medicine, Berlin, Germany; and

6. Department of Bioinformatics, Biocenter, Würzburg, Germany

Abstract

Current treatment for pediatric inflammatory bowel disease (IBD) patients is often ineffective, with serious side effects. Manipulating the gut microbiota via fecal microbiota transplantation (FMT) is an emerging treatment approach but remains controversial. We aimed to assess the composition of the fecal microbiome through a comparison of pediatric IBD patients to their healthy siblings, evaluating risks and prospects for FMT in this setting. A case-control (sibling) study was conducted analyzing fecal samples of six children with Crohn’s disease (CD), six children with ulcerative colitis (UC) and 12 healthy siblings by metagenomic sequencing. In addition, lifetime antibiotic intake was retrospectively determined. Species richness and diversity were significantly reduced in UC patients compared with control [Mann-Whitney U-test false discovery rate (MWU FDR) = 0.011]. In UC, bacteria positively influencing gut homeostasis, e.g., Eubacterium rectale and Faecalibacterium prausnitzii, were significantly reduced in abundance (MWU FDR = 0.05). Known pathobionts like Escherichia coli were enriched in UC patients (MWU FDR = 0.084). Moreover, E. coli abundance correlated positively with that of several virulence genes (SCC > 0.65, FDR < 0.1). A shift toward antibiotic-resistant taxa in both IBD groups distinguished them from controls [MWU Benjamini-Hochberg-Yekutieli procedure (BY) FDR = 0.062 in UC, MWU BY FDR = 0.019 in CD). The collected results confirm a microbial dysbiosis in pediatric UC, and to a lesser extent in CD patients, replicating associations found previously using different methods. Taken together, these observations suggest microbiotal remodeling therapy from family donors, at least for children with UC, as a viable option. NEW & NOTEWORTHY In this sibling study, prior reports of microbial dysbiosis in IBD patients from 16S rRNA sequencing was verified using deep shotgun sequencing and augmented with insights into the abundance of bacterial virulence genes and bacterial antibiotic resistance determinants, seen against the background of data on the specific antibiotic intake of each of the study participants. The observed dysbiosis, which distinguishes patients from siblings, highlights such siblings as potential donors for microbiotal remodeling therapy in IBD.

Funder

Naturwissenschaftlich-medizinisches Forschungszentrum (NMFZ)University Medical Center of the Johannes Gutenberg University Mainz, Germany

FP7: MetaCardis grant agreement

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3