Affiliation:
1. CURE/Division of Digestive Diseases and
2. Molecular Biology Institute, Department of Medicine, School of Medicine, University of California Los Angeles and The Medical and Research Services, Greater Los Angeles Veterans Affairs Health Care System, Los Angeles, California 70073
Abstract
Previous studies found that epidermal growth factor (EGF) decreased paracellular permeability in gastric mucosa, but the other physiological regulators and the molecular mechanisms mediating these responses remain undefined. We investigated the role of secretin and Src in regulating paracellular permeability because secretin regulates gastric chief cell function and Src mediates events involving the cytoskeletal-membrane interface, respectively. Confluent monolayers were formed from canine gastric epithelial cells in short-term culture on Transwell filter inserts. Resistance was monitored in the presence of secretin with or without specific kinase inhibitors. Tyrosine phosphorylation of Src at Tyr416 was measured with a site-specific phosphotyrosine antibody. Basolateral, but not apical, secretin at concentrations from 1 to 100 nM dose dependently increased resistance; this response was rapid and sustained over hours. PP2 (10 μM), a selective Src tyrosine kinase inhibitor, but not the inactive isomer PP3, abolished the increase in resistance by secretin but only modestly attenuated apical EGF effects. AG-1478 (100 nM), a specific EGF receptor tyrosine kinase inhibitor, attenuated the resistance increase to EGF but not secretin. Secretin, but not EGF, induced tyrosine phosphorylation of Src at Tyr416 in a dose-dependent fashion, with the maximal response observed at 1 min. PP2, but not PP3, dramatically inhibited this tyrosine phosphorylation. Secretin increases paracellular resistance in gastric mucosa through a Src-mediated pathway, while the effect of EGF is Src independent. Src appears to mediate the physiological effects of this Gs-coupled receptor in primary epithelial cells.
Publisher
American Physiological Society
Subject
Physiology (medical),Gastroenterology,Hepatology,Physiology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献