Apical acidification induces paracellular injury in canine gastric mucosal monolayers

Author:

Chen M. C.1,Chang A.1,Buhl T.1,Tanner M.1,Soll A. H.1

Affiliation:

1. Center for Ulcer Research and Education, Veterans Affairs WadsworthHospital Center, Los Angeles, California.

Abstract

We used primary monolayer cultures of enzyme-dispersed canine oxyntic mucosal cells mounted in Ussing chambers to characterize the apical barrier to H+. [3H]mannitol flux (MF) and [14C]inulin flux (IF) were used as size probes for tight junctions. Apical H+ produced a three-phase effect. In phase 1, as the apical pH was decreased from 7 to about 2.5, resistance (R) increased, but short-circuit current (Isc) did not change. In phase 2, an increased paracellular permeability developed at pH below 2.5-1.7, evidenced by decreased R and increased MF but not IF. Size sieving and monolayer integrity were preserved, and this paracellular leak was either fully reversed or stabilized by apical neutralization, depending on the duration of the paracellular leak. In phase 3, after sustained exposure to an apical pH below approximately 2, transepithelial integrity was lost; R decreased to fluid R, and both MF and IF increased. Basolateral acidification below pH 5.5 produced rapid monolayer disruption. Low concentrations of cytochalasin D (CD) decreased R and increased MF but not IF; apical acidification to pH 4 after CD increased R and decreased the MF, indicating reduced paracellular permeability by apical H+. Apical amiloride did not alter Isc; however, after 48 h of treatment with hydrocortisone and insulin, an amiloride-sensitive Isc component became evident. Our data indicate that the increase in R observed with apical acidification reflects decreased paracellular permeability and that the earliest injury with apical acidification is a selective paracellular leak.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3