All-trans-retinoic acid distribution and metabolism in vitamin A-marginal rats

Author:

Cifelli Christopher J.,Ross A. Catharine

Abstract

Retinoids, including all- trans-retinoic acid (RA), are considered to have anti-inflammatory properties and are used therapeutically for diseases of the skin and certain cancers. However, few studies have addressed the effects of disease states on RA metabolism. The present study was conducted to better understand the effects of exogenous RA, both in the absence and presence of inflammation, on the distribution and metabolism of a dose of [3H]RA. Female Sprague-Dawley rats fed a low vitamin A diet were pretreated with RA (po), a low dose of lipopolysaccharide (LPS, ip), or their combination. Twelve hours later, albumin-bound [3H]RA was injected intravenously, and tissue organic- and aqueous-phase3H was determined after 10 and 30 min. In liver and plasma,3H-labeled organic metabolites (e.g., 4-oxo- and 4-hydroxy-RA) were isolated by solid-phase extraction. LPS-induced inflammation significantly reduced plasma retinol by 47%, increased total3H in plasma at 10 min, and reduced total3H in liver at both times. In contrast, RA pretreatment did not affect plasma retinol, significantly increased total3H in plasma at both times, and did not affect liver total3H. However, by 30 min, RA significantly increased [3H]RA metabolism in plasma, liver, lung, and small intestine, as indicated by greater3H-labeled aqueous-phase and3H-labeled organic-phase metabolites. The results presented here demonstrate that, although LPS-induced inflammation affects the organ distribution of RA, the ability of RA to induce its own catabolism is maintained during inflammation. Thus we conclude that RA and LPS act independently to alter RA metabolism in vitamin A-marginal rats.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3