Fish oil feeding alters liver gene expressions to defend against PPARα activation and ROS production

Author:

Takahashi Mayumi1,Tsuboyama-Kasaoka Nobuyo1,Nakatani Teruyo1,Ishii Masami2,Tsutsumi Shuichi2,Aburatani Hiroyuki2,Ezaki Osamu1

Affiliation:

1. Division of Clinical Nutrition, National Institute of Health and Nutrition, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8636; and

2. Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan

Abstract

Fish oil rich in n-3 polyunsaturated fatty acids has been shown to reduce the risk of cardiovascular diseases partly by reduction of blood triglyceride concentration. This favorable effect mainly results from the combined effects of inhibition of lipogenesis by decrease of SREBP-1 and stimulation of fatty acid oxidation by activation of peroxisome proliferator-activated receptor-α (PPARα) in liver. However, because fish oil is easily peroxidized to form hydroperoxides and increases oxidative stress, some defense mechanism(s) against oxidative stress might occur. To understand these complex effects of fish oil diet, the gene expression profile of mice liver was analyzed using high-density oligonucleotide arrays. High-fat diet (60% of total energy intake) as either safflower oil or fish oil (tuna) was given to mice. After 6 mo of feeding, expression levels of a total of 6,521 genes were analyzed. In fish oil diet compared with safflower oil diet, immune reaction-related genes, antioxidant genes (several glutathione transferases, uncoupling protein 2, and Mn-superoxide dismutase), and lipid catabolism-related genes upregulated, whereas cholesterol and fatty acid synthesis-related genes and 17-alpha hydroxylase/C17–20 lyase and sulfotransferases related to production of endogenous PPARα ligands and reactive oxygen species (ROS) downregulated markedly. Because upregulation of these antioxidant genes and downregulation of sulfotransferases were also observed in mice administered fenofibrate, altered gene expression related to antioxidant system observed in fish oil feeding was mediated directly and indirectly by PPARα activation. However, downregulation of 17-alpha hydroxylase/C17–20 lyase was not due to PPARα activation. These data indicate that fish oil feeding downregulated the endogenous PPARα-activation system and increased antioxidant gene expressions to protect against ROS excess.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3