Deletion of organic cation transporter Oct3 promotes hepatic fibrosis via upregulation of TGFβ

Author:

Vollmar Johanna1,Kim Yong Ook2,Marquardt Jens U.1,Becker Diana1,Galle Peter R.1,Schuppan Detlef2,Zimmermann Tim1

Affiliation:

1. 1st Department of Internal Medicine, Gastroenterology, and Hepatology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany

2. Institute of Translational Immunology, Fibrosis and Metabolism Center, Johannes Gutenberg-University, Mainz, Germany

Abstract

Organic cation transporters (OCT) are responsible for the intracellular uptake and detoxification of a broad spectrum of endogenous and exogenous substrates. OCTs are downregulated in cholestasis, fibrosis, and hepatocellular carcinoma, but the underlying molecular mechanisms and downstream effects of OCT deletion are unknown. Oct3-knockout ( Oct3−/−; FVB.Slc22a3tm10pb) and wild-type (WT; FVB) mice were subject to escalating doses of carbon tetrachloride (CCl4) or thioacetamide (TAA) for 6 wk to induce advanced parenchymal liver fibrosis. Secondary biliary fibrosis was generated by bile duct ligation. Liver fibrosis was assessed by hydroxyproline determination, quantitative Sirius red morphometry, and quantitative real-time PCR for fibrosis and inflammation-related genes. Ductular reaction was assessed by bile duct count per field of view in hematoxylin and eosin staining. General gene expression analyses were performed in liver tissue from untreated Oct3−/− and WT mice. Finally, primary murine hepatocytes were treated with the nonselective OCT inhibitor quinine, and transforming growth factor-β1 ( Tgfβ1) protein expression was quantified by quantitative real-time PCR and Western blot. Oct3−/− mice developed significantly more fibrosis after bile duct ligation and CCl4 treatment compared with WT mice. Ductular reaction was enhanced in the long-term model. Concomitantly, Oct1 mRNA expression was downregulated during cholestatic and chemically (TAA and CCl4) induced fibrogenesis. The downregulation of Oct1 mRNA in fibrotic liver tissue reversed within 4 wk after TAA cessation. Gene expression analysis by next-generation sequencing revealed an enrichment of Tgfβ1 target genes in Oct3−/− mice. Tgfβ1 mRNA expression was significantly upregulated after chemically induced fibrosis ( P < 0.001) in Oct3−/− compared with WT mice. Accordingly, in primary murine hepatocytes functional inhibition of OCT led to an upregulation of Tgfβ1 mRNA expression. Loss of Oct3 promotes fibrogenesis by affecting Tgfβ-mediated homeostasis in mice with chronic biliary and parenchymal liver damage and fibrosis. NEW & NOTEWORTHY We show for the first time that organic cation transporter 3 (Oct3) is not only downregulated in fibrosis but loss of Oct3 also leads to an upregulation of transforming growth factor-β contributing to fibrosis progression.

Funder

MAIFOR

EU ERC

Deutsche Forschungsgemeinschaft (DFG)

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3