Interaction of cations, anions, and weak base quinine with rat renal cation transporter rOCT2 compared with rOCT1

Author:

Arndt Petra1,Volk Christopher1,Gorboulev Valentin1,Budiman Thomas2,Popp Christian1,Ulzheimer-Teuber Isabel1,Akhoundova Aida1,Koppatz Stefan1,Bamberg Ernst2,Nagel Georg2,Koepsell Hermann1

Affiliation:

1. Institute of Anatomy of the Bayerische Julius-Maximilians-Universität, 97070 Würzburg; and

2. Max-Planck-Institute of Biophysics, 60596 Frankfurt, Germany

Abstract

The rat organic cation transporter (rOCT)-2 was characterized by electrical and tracer flux measurements compared with rOCT1. By applying choline gradients to voltage-clamped Xenopus oocytes expressing rOCT2, potential-dependent currents could be induced in both directions. Tracer flux measurements with seven organic cations revealed similar Michaelis-Menten constant values for both transporters, with the exception of guanidine. In parallel experiments with rOCT2 and rOCT1, inhibition of tetraethylammonium transport by 12 cations, 2 weak bases, corticosterone, and the anions para-amminohippurate, α-ketoglutarate, and probenecid was characterized. The IC50values of many inhibitors were similar for both transporters, whereas others were significantly different. Mepiperphenidol and O-methylisoprenaline showed an ∼70-fold lower and corticosterone a 38-fold higher affinity for rOCT2. With the use of these inhibitors together with previous information on cation transporters, experimental protocols are proposed to dissect out the individual contributions of rOCT2 and rOCT1 in intact proximal tubule preparations. Inhibition experiments at different pH levels strongly suggest that the weak base quinine passively permeates the plasma membrane at physiological pH and inhibits rOCT2 from the intracellular side.

Publisher

American Physiological Society

Subject

Physiology

Cited by 116 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3