The ryanodine receptor is expressed in human pancreatic acinar cells and contributes to acinar cell injury

Author:

Lewarchik Christopher M.1,Orabi Abrahim I.1,Jin Shunqian1,Wang Dong1,Muili Kamaldeen A.2,Shah Ahsan U.1,Eisses John F.1,Malik Adeel1,Bottino Rita3,Jayaraman Thottala4,Husain Sohail Z.1

Affiliation:

1. Departments of 1Pediatrics and

2. Department of Neurological Surgery, Comprehensive Cancer Center, Wexner Medical Center, Ohio State University, Columbus, Ohio;

3. Institute of Cellular Therapeutics, Allegheny General Hospital, Pittsburgh, Pennsylvania

4. Dental Medicine, Children's Hospital of Pittsburgh of UPMC and the University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania;

Abstract

Physiological calcium (Ca2+) signals within the pancreatic acinar cell regulate enzyme secretion, whereas aberrant Ca2+ signals are associated with acinar cell injury. We have previously identified the ryanodine receptor (RyR), a Ca2+ release channel on the endoplasmic reticulum, as a modulator of these pathological signals. In the present study, we establish that the RyR is expressed in human acinar cells and mediates acinar cell injury. We obtained pancreatic tissue from cadaveric donors and identified isoforms of RyR1 and RyR2 by qPCR. Immunofluorescence staining of the pancreas showed that the RyR is localized to the basal region of the acinar cell. Furthermore, the presence of RyR was confirmed from isolated human acinar cells by tritiated ryanodine binding. To determine whether the RyR is functionally active, mouse or human acinar cells were loaded with the high-affinity Ca2+ dye (Fluo-4 AM) and stimulated with taurolithocholic acid 3-sulfate (TLCS) (500 μM) or carbachol (1 mM). Ryanodine (100 μM) pretreatment reduced the magnitude of the Ca2+ signal and the area under the curve. To determine the effect of RyR blockade on injury, human acinar cells were stimulated with pathological stimuli, the bile acid TLCS (500 μM) or the muscarinic agonist carbachol (1 mM) in the presence or absence of the RyR inhibitor ryanodine. Ryanodine (100 μM) caused an 81% and 47% reduction in acinar cell injury, respectively, as measured by lactate dehydrogenase leakage ( P < 0.05). Taken together, these data establish that the RyR is expressed in human acinar cells and that it modulates acinar Ca2+ signals and cell injury.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3