Author:
Miura K.,Sugita Y.,Matsuura K.,Inaba N.,Kawano K.,Miles F. A.
Abstract
We recorded the initial vertical vergence eye movements elicited in monkeys at short latency (∼70 ms) when the two eyes see one-dimensional (1D) horizontal grating patterns that are identical except for a phase difference (disparity) of one-quarter wavelength. With gratings composed of single sine waves, responses were always compensatory, showing Gaussian dependence on log spatial frequency (on average: peak = 0.75 cycles/deg; SD = 0.74; r2 = 0.980) and monotonic dependence on log contrast with a gradual saturation well described by the Naka-Rushton equation (on average: n = 0.89; C50 = 4.1%; r2 = 0.978). With gratings composed of two sine waves whose spatial frequencies were in the ratio 3:5 and whose disparities were of opposite sign (the 3f5f stimulus), responses were determined by the disparities and contrasts of the two sine-wave components rather than the disparity of the features, consistent with early spatial filtering of the monocular inputs before their binocular combination and mediation by detectors sensitive to disparity energy. In addition, responses to the 3f5f stimulus showed a nonlinear dependence on the relative contrasts of the two sine waves. Thus on average, when the contrast of one sine wave was 2.3 times greater than that of the other, the one with the lower contrast was largely ineffective as though suppressed, and responses were determined almost entirely by the sine wave of higher contrast: Winner-Take-All. These findings are very similar to those published previously on the vertical vergence responses of humans, indicating that the monkey provides a good animal model for studying these disparity vergence responses.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献