Eye Movements in Response to Dichoptic Motion: Evidence for a Parallel-Hierarchical Structure of Visual Motion Processing in Primates

Author:

Hayashi Ryusuke,Miura Kenichiro,Tabata Hiromitsu,Kawano Kenji

Abstract

Brief movements of a large-field visual stimulus elicit short-latency tracking eye movements termed “ocular following responses” (OFRs). To address the question of whether OFRs can be elicited by purely binocular motion signals in the absence of monocular motion cues, we measured OFRs from monkeys using dichoptic motion stimuli, the monocular inputs of which were flickering gratings in spatiotemporal quadrature, and compared them with OFRs to standard motion stimuli including monocular motion cues. Dichoptic motion did elicit OFRs, although with longer latencies and smaller amplitudes. In contrast to these findings, we observed that other types of motion stimuli categorized as non-first-order motion, which is undetectable by detectors for standard luminance-defined (first-order) motion, did not elicit OFRs, although they did evoke the sensation of motion. These results indicate that OFRs can be driven solely by cortical visual motion processing after binocular integration, which is distinct from the process incorporating non-first-order motion for elaborated motion perception. To explore the nature of dichoptic motion processing in terms of interaction with monocular motion processing, we further recorded OFRs from both humans and monkeys using our novel motion stimuli, the monocular and dichoptic motion signals of which move in opposite directions with a variable motion intensity ratio. We found that monocular and dichoptic motion signals are processed in parallel to elicit OFRs, rather than suppressing each other in a winner-take-all fashion, and the results were consistent across the species.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Reference73 articles.

1. Form-Cue Invariant Motion Processing in Primate Visual Cortex

2. Joint-encoding of motion and depth by visual cortical neurons: neural basis of the Pulfrich effect

3. Central neural mechanisms for detecting second-order motion

4. Barthelemy FV, Masson GS. Spatial integration of motion for human and monkey ocular following: effect of spatial frequency and eccentricity. Soc Neurosci Abstr 735.735/L733, 2006.

5. Stages in motion processing revealed by the ocular following response

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3