Gain Modulation of Neuronal Responses by Subtractive and Divisive Mechanisms of Inhibition

Author:

Ayaz Asli,Chance Frances S.

Abstract

Gain modulation of neuronal responses is widely observed in the cerebral cortex of both anesthetized and behaving animals. Does this multiplicative effect on neuronal tuning curves require underlying multiplicative mechanisms of integration? We compare the effects of a divisive mechanism of inhibition (noisy excitatory and inhibitory synaptic inputs) with the effects of two subtractive mechanisms (shunting conductance and hyperpolarizing current) on the tuning curves of a model cortical neuron. We find that, although the effects of subtractive inhibition can appear nonlinear, they are accompanied by a change in response threshold and are best described as a vertical shift along the response axis. Increasing noisy synaptic activity divisively scales the model responses, reproducing a response-gain control effect. When mutual inhibition between subpopulations of local neurons is included, the model exhibits a gain modulation effect that is better described as input-gain control. We apply these findings to experimental data by examining how noisy synaptic input may underlie divisive surround suppression and attention-driven gain modulation of neuronal responses in the visual system.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3