Leveraging Spiking Deep Neural Networks to Understand the Neural Mechanisms Underlying Selective Attention

Author:

Sörensen Lynn K. A.1ORCID,Zambrano Davide23,Slagter Heleen A.4,Bohté Sander M.125,Scholte H. Steven1

Affiliation:

1. University of Amsterdam, The Netherlands

2. Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

3. École Polytechnique Fédérale de Lausanne, Switzerland

4. Vrije Universiteit Amsterdam, The Netherlands

5. Rijksuniversiteit Groningen, The Netherlands

Abstract

Abstract Spatial attention enhances sensory processing of goal-relevant information and improves perceptual sensitivity. Yet, the specific neural mechanisms underlying the effects of spatial attention on performance are still contested. Here, we examine different attention mechanisms in spiking deep convolutional neural networks. We directly contrast effects of precision (internal noise suppression) and two different gain modulation mechanisms on performance on a visual search task with complex real-world images. Unlike standard artificial neurons, biological neurons have saturating activation functions, permitting implementation of attentional gain as gain on a neuron's input or on its outgoing connection. We show that modulating the connection is most effective in selectively enhancing information processing by redistributing spiking activity and by introducing additional task-relevant information, as shown by representational similarity analyses. Precision only produced minor attentional effects in performance. Our results, which mirror empirical findings, show that it is possible to adjudicate between attention mechanisms using more biologically realistic models and natural stimuli.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience

Reference82 articles.

1. TensorFlow: Large-scale machine learning on heterogeneous distributed systems;Abadi,2016

2. An evaluation of causes for unreliability of synaptic transmission;Allen;Proceedings of the National Academy of Sciences, U.S.A.,1994

3. Attentional enhancement of spatial resolution: Linking behavioural and neurophysiological evidence;Anton-Erxleben;Nature Reviews Neuroscience,2013

4. Gain modulation of neuronal responses by subtractive and divisive mechanisms of inhibition;Ayaz;Journal of Neurophysiology,2009

5. Long short-term memory and learning-to-learn in networks of spiking neurons;Bellec;Advances in Neural Information Processing Systems,2018

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3