Affiliation:
1. Department of Kinesiology, Michigan State University, East Lansing, Michigan
2. Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan
3. Department of Physical Medicine and Rehabilitation, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
Abstract
Stroke often results in hemiparesis, leaving one side of the body “affected” relative to the other side. Prior research has shown that the affected arm has higher variability; however, the extent to which this variability can be modulated is unclear. Here we used a shared bimanual task to examine the degree to which participants could modulate the variability in the affected arm after stroke. Participants with chronic stroke ( n = 11) and age-matched controls ( n = 11) performed unimanual and bimanual reaching movements to move a cursor on a screen to different targets. In the unimanual condition, the cursor was controlled only by the movement of a single arm, whereas, in the bimanual condition, the cursor position was “shared” between the two arms by using a weighted average of the two hand positions. Unknown to the participants, we altered the weightings of the affected and unaffected arms to cursor motion and examined how the movement variability on each arm changed depending on its contribution to the task. Results showed that stroke survivors had higher movement variability on the affected arm; however, like age-matched controls, they were able to modulate the variability in both the affected and unaffected arms according to the weighting condition. Specifically, as the weighting on a particular arm increased (i.e., it became more important to the task), the movement variability decreased. These results show that stroke survivors are capable of modulating variability depending on the task context, and this feature may potentially be exploited for rehabilitation paradigms. NEW & NOTEWORTHY We show that chronic stroke survivors, similar to age-matched controls, are able to modulate variability in their affected and unaffected limbs in redundant bimanual tasks as a function of how these limbs contribute to the task. Specifically, in both affected and unaffected limbs, the variability of the limb increases as its contribution to the task decreases. This feature may potentially be exploited in rehabilitation paradigms using bimanual tasks.
Funder
MSu-Sparrow Center For Innovation and Research
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献