Two Distinct Mechanisms Shape the Reliability of Neural Responses

Author:

Schreiber Susanne,Samengo Inés,Herz Andreas V.M.

Abstract

Despite intrinsic noise sources, neurons can generate action potentials with remarkable reliability. This reliability is influenced by the characteristics of sensory or synaptic inputs, such as stimulus frequency. Here we use conductance-based models to study the frequency dependence of reliability in terms of the underlying single-cell properties. We are led to distinguish a mean-driven firing regime, where the stimulus mean is sufficient to elicit continuous firing, and a fluctuation-driven firing regime, where spikes are generated by transient stimulus fluctuations. In the mean-driven regime, the stimulus frequency that induces maximum reliability coincides with the firing rate of the cell, whereas in the fluctuation-driven regime, it is determined by the resonance properties of the subthreshold membrane potential. When the stimulus frequency does not match the optimal frequency, the two firing regimes exhibit different “symptoms” of decreased reliability: reduced spike-time precision and reduced spike probability, respectively. As a signature of stochastic resonance, reliable spike generation in the fluctuation-driven regime can benefit from intermediate amounts of noise that boost spike probability without significantly impairing spike-time precision. Our analysis supports the view that neurons are endowed with selection mechanisms that allow only certain stimulus frequencies to induce reliable spiking. By modulating the intrinsic cell properties, the nervous system can thus tune individual neurons to pick out specific input frequency bands with enhanced spike precision or spike probability.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3