Bursts of Information: Coordinating Interneurons Encode Multiple Parameters of a Periodic Motor Pattern

Author:

Mulloney Brian,Harness Patricia I.,Hall Wendy M.

Abstract

The limbs on different segments of the crayfish abdomen that drive forward swimming are directly controlled by modular pattern-generating circuits. These circuits are linked together by axons of identified coordinating interneurons. We described the distributions of these neurons in each abdominal ganglion and monitored their firing during expression of the swimming motor pattern. We analyzed the timing, the numbers of spikes, and the duration of each burst of spikes in these coordinating neurons. To see what information these neurons encoded, we correlated these parameters with the timing, durations, and strengths of bursts of spikes in motor axons from the same modules. During the power-stroke phase of each output cycle, the anterior-projecting neurons fired bursts of spikes that encoded information about the start-time, duration, and strength of each burst of spikes in power-stroke motor neurons from the same module. When the period and intensity of the motor output fluctuated, the bursts of spikes in these neurons tracked these fluctuations accurately. Each additional spike in these neurons signified an increase in the strength of the power-stroke burst. The posterior-projecting neurons that fired during the return-stroke phase encoded similar information about the return-stroke motor neurons. Although homologous neurons from different ganglia were qualitatively similar, neurons from posterior ganglia fired significantly more spikes per burst than those from more anterior ganglia, a segmental gradient that correlates with the normal posterior-to-anterior phase progression of limb movements. We propose that this gradient and a similar gradient in the durations of bursts in power-stroke motor neurons might reflect a hitherto-undetected difference in the excitation or intrinsic excitability of swimmeret modules in different segments.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3