Rhythmicity of Spinal Neurons Activated During Each Form of Fictive Scratching in Spinal Turtles

Author:

Berkowitz Ari1

Affiliation:

1. Department of Zoology, University of Oklahoma, Norman, Oklahoma 73019

Abstract

Are behaviors that rely on common muscles and motoneurons generated by separate or overlapping groups of pattern-generating neurons? This question was investigated for the three forms of scratching in immobilized, spinal turtles. Individual neurons were recorded extracellularly from the gray matter through most of the spinal cord hindlimb enlargement gray matter, but were avoided in the region of motoneuron cell bodies. Each form of fictive scratching was elicited by mechanical stimulation of the body surface. The rhythmic modulation of spinal neurons was assessed using phase histograms and circular statistics. The degree of rhythmic modulation and the phase preference of each rhythmically active neuron were measured with respect to the activity cycle of the ipsilateral hip flexor nerve. The action potentials of rhythmic neurons tended to be concentrated in a particular phase of the ipsilateral hip flexor activity cycle no matter which form of fictive scratching was elicited. This consistent phase preference suggests that some of these neurons may contribute to generation of the hip rhythm for all three forms of scratching, strengthening the case that vertebrate pattern-generating circuitry for distinct behaviors can be overlapping. The degree of rhythmic modulation of each unit during fictive scratching was consistently correlated with the dorsoventral location of the recording, but not with the mediolateral or rostrocaudal location; neurons located more ventrally tended to be more rhythmic. The phase preferences of units were related to the region of the body surface to which each neuron responded maximally (i.e., the region to which each unit was broadly tuned). Units tuned to the rostral scratch or pocket scratch region tended to have a phase preference during ipsilateral hip flexor activity, whereas units tuned to the caudal scratch region did not. This suggests the hypothesis that the hip flexes further during rostral and pocket scratching, and extends further during caudal scratching, due to the net effects of a population of spinal interneurons that are both broadly tuned and rhythmically active.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3