Lipolytic suppression following carbohydrate ingestion limits fat oxidation during exercise

Author:

Horowitz Jeffrey F.1,Mora-Rodriguez Ricardo1,Byerley Lauri O.1,Coyle Edward F.1

Affiliation:

1. The Human Performance Laboratory, Department of Kinesiology and Health Education and Division of Nutritional Sciences, The University of Texas at Austin, Austin, Texas 78712

Abstract

This study determined if the suppression of lipolysis after preexercise carbohydrate ingestion reduces fat oxidation during exercise. Six healthy, active men cycled 60 min at 44 ± 2% peak oxygen consumption, exactly 1 h after ingesting 0.8 g/kg of glucose (Glc) or fructose (Fru) or after an overnight fast (Fast). The mean plasma insulin concentration during the 50 min before exercise was different among Fast, Fru, and Glc (8 ± 1, 17 ± 1, and 38 ± 5 μU/ml, respectively; P< 0.05). After 25 min of exercise, whole body lipolysis was 6.9 ± 0.2, 4.3 ± 0.3, and 3.2 ± 0.5 μmol ⋅ kg−1 ⋅ min−1and fat oxidation was 6.1 ± 0.2, 4.2 ± 0.5, and 3.1 ± 0.3 μmol ⋅ kg−1 ⋅ min−1during Fast, Fru, and Glc, respectively (all P < 0.05). During Fast, fat oxidation was less than lipolysis ( P < 0.05), whereas fat oxidation approximately equaled lipolysis during Fru and Glc. In an additional trial, the same subjects ingested glucose (0.8 g/kg) 1 h before exercise and lipolysis was simultaneously increased by infusing Intralipid and heparin throughout the resting and exercise periods (Glc+Lipid). This elevation of lipolysis during Glc+Lipid increased fat oxidation 30% above Glc (4.0 ± 0.4 vs. 3.1 ± 0.3 μmol ⋅ kg−1 ⋅ min−1; P < 0.05), confirming that lipolysis limited fat oxidation. In summary, small elevations in plasma insulin before exercise suppressed lipolysis during exercise to the point at which it equaled and appeared to limit fat oxidation.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3