Aldosterone-induced EGFR expression: interaction between the human mineralocorticoid receptor and the human EGFR promoter

Author:

Grossmann Claudia,Krug Alexander W.,Freudinger Ruth,Mildenberger Sigrid,Voelker Katharina,Gekle Michael

Abstract

Aldosterone plays a key role in cardiovascular and renal injury. The underlying mechanisms are not completely understood. Because the epidermal growth factor receptor (EGFR) is involved in the development of fibrosis and vascular dysfunction, upregulation of EGFR expression by aldosterone-bound mineralocorticoid receptor (MR) is an attractive hypothesis. We investigated the effect of aldosterone on EGFR expression in the aorta of adrenalectomized rats and in human aorta smooth muscle cells (HAoSMC) in primary culture. Aldosterone, but not dexamethasone, stimulated EGFR expression in vivo in the aorta as well as in HAoSMC. EGFR degradation was not affected. Aldosterone-induced EGFR expression in HAoSMC was dose dependent and prevented by spironolactone. Furthermore, incubation of HAoSMC with aldosterone led to enhanced EGF-induced ERK1/2 phosphorylation and an EGFR-dependent increase in media fibronectin. EGFR promoter reporter gene assay as well as chromatin immunoprecipitation data indicate that MR interacts with the EGFR promoter. With deletion constructs we gained evidence that this interaction takes place between the hMR and the EGFR promoter regions 316–163 (stronger activation site, EC50∼1.0 nM) and 163–1 (weaker activation site, EC50∼0.7 nM), which do not comprise canonical glucocorticoid response elements and are not activated by the human glucocorticoid receptor. The interactions require in part the NH2-terminal domains of MR. ELISA-based transcription factor DNA binding assay with in vitro synthesized hMR suggest direct binding to region 163–1. Our results indicate that aldosterone leads to enhanced EGFR expression via an interaction with the EGFR promoter, which is MR specific and could contribute to the aldosterone-induced increase in fibronectin abundance.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3