Affiliation:
1. Station de Recherches Avicoles, Institut National de la Recherche Agronomique Centre de Tours, 37380 Nouzilly;
2. Laboratoire de Nutrition et Sécurité Alimentaire, 78352 Jouy-en-Josas;
3. Laboratoire de Nutrition Centre Hospitalier Universitaire de Tours, 37044 Tours Cedex; and
4. Medecine4-Nutrition and Equipe Associée 948 Centre Hospitalier Universitaire, 29200 Brest, France
Abstract
A high-fat diet containing polyunsaturated fatty acids (PUFA: n-3 or n-6) given for 4 wk to 5-wk-old male Wistar rats induced a clear hyperglycemia (10.4 ± 0.001 mmol/l for n-6 rats and 10.1 ± 0.001 for n-3 rats) and hyperinsulinemia (6.6 ± 0.8 ng/ml for n-6 rats and 6.4 ± 1.3 for n-3 rats), signs of insulin resistance. In liver, both diets (n-3 and n-6) significantly reduced insulin receptor (IR) number, IR and IR substrate (IRS)-1 tyrosine phosphorylation, and phosphatidylinositol (PI) 3′-kinase activity. In contrast, in leg muscle, IR density, as determined by Western blotting, was not affected, whereas IR and IRS-1 tyrosine phosphorylation in response to insulin treatment was restored in animals fed with n-3 PUFA to normal; in n-6 PUFA, the phosphorylation was depressed, as evidenced by Western blot analysis using specific antibodies. In addition, PI 3′-kinase activity and GLUT-4 content in muscle were maintained at normal levels in rats fed with n-3 PUFA compared with rats fed a normal diet. In rats fed with n-6 PUFA, both PI 3′-kinase activity and GLUT-4 content were reduced. Furthermore, in adipose tissue and using RT-PCR, we show that both n-3 and n-6 PUFA led to slight or strong reductions in p85 expression, respectively, whereas GLUT-4 and leptin expression was depressed in n-6 rats. The expression was not affected in n-3 rats compared with control rats. In conclusion, a high-fat diet enriched in n-3 fatty acids maintained IR, IRS-1 tyrosine phosphorylation, and PI 3′-kinase activity and total GLUT-44 content in muscle but not in liver. A high-fat diet (n-3) partially altered the expression of p85 but not that of GLUT-4 and leptin mRNAs in adipose tissue.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
146 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献