Enhanced insulin-stimulated activation of phosphatidylinositol 3-kinase in the liver of high-fat-fed rats.

Author:

Anai M1,Funaki M1,Ogihara T1,Kanda A1,Onishi Y1,Sakoda H1,Inukai K1,Nawano M1,Fukushima Y1,Yazaki Y1,Kikuchi M1,Oka Y1,Asano T1

Affiliation:

1. Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan.

Abstract

Insulin receptor substrate (IRS)-1 and IRS-2, which mediate phosphatidylinositol (PI) 3-kinase activation, play essential roles in insulin-induced translocation of GLUT4 and in glycogen synthesis. In this study, we investigated the process of PI 3-kinase activation via binding with IRS-1 and -2 in liver, muscle, and fat of high-fat-fed rats, a model of insulin-resistant diabetes. In the liver of high-fat-fed rats, insulin increased the PI 3-kinase regulatory subunit p85alpha and the PI 3-kinase activities associated with IRS-1 3.6- and 2.4-fold, and with IRS-2, 4.7- and 3.0-fold, respectively, compared with those in control rats. The tyrosine phosphorylation levels of IRS-1 and IRS-2 were not significantly altered, however. In contrast with the liver, tyrosine phosphorylation levels and associated PI 3-kinase proteins and activities were decreased in the muscle and adipose tissue of high-fat-fed rats. Thus, high-fat feeding appears to cause insulin resistance in the liver by a mechanism different from the impaired PI 3-kinase activation observed in muscle and adipose tissue. Taking into consideration that hepatic PI 3-kinase activation is severely impaired in obese diabetic models such as Zucker fatty rats, it is possible that the mechanism by which a high-fat diet causes insulin resistance is quite different from that associated with obesity and overeating due to abnormality in the leptin system. This is the first report to show increased PI 3-kinase activation by insulin in an insulin-resistant diabetic animal model. These findings may be important for understanding the mechanism of insulin resistance in human NIDDM, since a high-fat diet is considered to be one of the major factors exacerbating insulin insensitivity in humans.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3