Angiotensin II induces acrosomal exocytosis in bovine spermatozoa

Author:

Gur Yael1,Breitbart Haim2,Lax Yehudit2,Rubinstein Sara2,Zamir Nadav23

Affiliation:

1. Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978;

2. Department of Life Sciences, Bar-Ilan University, Ramat Gan 52900; and

3. D-Pharm, Kiryat Weizmann, Rehovot 76123, Israel

Abstract

Ejaculated mammalian spermatozoa must reside in the female genital tract for some time before gaining the ability to fertilize the egg. During this time, spermatozoa undergo some physiological changes that collectively are called capacitation. Capacitation of mammalian spermatozoa is a prerequisite for acrosome reaction, which is an exocytotic event occurring before fertilization. The specific biophysical and biochemical changes that accompany sperm capacitation and the agonists inducing acrosome reaction are not fully understood. Using SDS-gel electrophoresis and immunoblotting, we demonstrate the existence of a class of angiotensin receptors (AT1) in bovine spermatozoa. In capacitated sperm, we show that angiotensin II (ANG II) AT1 receptors are localized in the head and tail, whereas in noncapacitated cells the receptors are localized in the tail only. We find that ANG II markedly stimulates acrosomal exocytosis of capacitated bovine spermatozoa in vitro in a concentration range of 0.1–10 nM. No effect of ANG II was found in noncapacitated cells. The ability of ANG II to stimulate the acrosome reaction depends on the presence of calcium ions in the incubation medium. The ANG II-induced acrosome reaction was markedly inhibited by a selective AT1 receptor antagonist, losartan (DUP 753). PD-123319, a selective antagonist of the ANG II AT2 receptor, had no effect on the ANG II-induced acrosome reaction. Thus ANG II via activation of AT1 receptors may play a regulatory role in the induction of the acrosome reaction.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3