G-Protein Coupled Receptors in Human Sperm: An In Silico Approach to Identify Potential Modulatory Targets

Author:

Corda Pedro O.ORCID,Santiago JoanaORCID,Fardilha MargaridaORCID

Abstract

G protein-coupled receptors (GPCRs) are involved in several physiological processes, and they represent the largest family of drug targets to date. However, the presence and function of these receptors are poorly described in human spermatozoa. Here, we aimed to identify and characterize the GPCRs present in human spermatozoa and perform an in silico analysis to understand their potential role in sperm functions. The human sperm proteome, including proteomic studies in which the criteria used for protein identification was set as <5% FDR and a minimum of 2 peptides match per protein, was crossed with the list of GPCRs retrieved from GLASS and GPCRdb databases. A total of 71 GPCRs were identified in human spermatozoa, of which 7 had selective expression in male tissues (epididymis, seminal vesicles, and testis), and 9 were associated with male infertility defects in mice. Additionally, ADRA2A, AGTR1, AGTR2, FZD3, and GLP1R were already associated with sperm-specific functions such as sperm capacitation, acrosome reaction, and motility, representing potential targets to modulate and improve sperm function. Finally, the protein-protein interaction network for the human sperm GPCRs revealed that 24 GPCRs interact with 49 proteins involved in crucial processes for sperm formation, maturation, and fertilization. This approach allowed the identification of 8 relevant GPCRs (ADGRE5, ADGRL2, GLP1R, AGTR2, CELSR2, FZD3, CELSR3, and GABBR1) present in human spermatozoa that can be the subject of further investigation to be used even as potential modulatory targets to treat male infertility or to develop new non-hormonal male contraceptives.

Funder

Institute for Biomedicine—iBiMED

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference70 articles.

1. Wein, A.J., Kavoussi, L.R., Mcdougal, W.S., Peters, C.A., and Partin, A.W. Male Reproductive Physiology. Campbell-Walsh Urology, 2016.

2. Molecular changes and signaling events occurring in spermatozoa during epididymal maturation;Gervasi;Andrology,2017

3. Fertilizing Capacity of Spermatozoa deposited into the Fallopian Tubes;Chang;Nature,1951

4. Observations on the penetration of the sperm in the mammalian egg;Austin;Aust. J. Sci. Res. B.,1951

5. Signaling in Sperm: Toward a Molecular Understanding of the Acquisition of Sperm Motility in the Mouse Epididymis1;Vadnais;Biol. Reprod.,2013

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3