Maintenance of the thyroid axis during diet-induced obesity in rodents is controlled at the central level

Author:

Perello Mario1,Çakir Isin1,Cyr Nicole E.1,Romero Amparo1,Stuart Ronald C.1,Chiappini Franck2,Hollenberg Anthony N.2,Nillni Eduardo A.13

Affiliation:

1. Division of Endocrinology, Department of Medicine, The Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island;

2. Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts; and

3. Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island

Abstract

The hypothalamic-pituitary-thyroid (HPT) axis is a major contributor in maintaining energy expenditure and body weight, and the adipocyte hormone leptin regulates this axis by increasing TRH levels in the fed state. Leptin stimulates TRH directly in the hypothalamic paraventricular nucleus (PVN; direct pathway) and indirectly by regulating proopiomelnocortin neurons in the hypothalamic arcuate nucleus (ARC; indirect pathway). Whereas the indirect pathway is fully functional in lean animals, it is inactive during diet-induced obesity (DIO) because of the establishment of leptin resistance. Despite this, the HPT axis activity in obese humans and rodents remains within the normal levels or slightly higher. Therefore, in this study, we aimed to determine the mechanism(s) by which the HPT axis is still active despite leptin resistance. With a combination of using the Sprague-Dawley rat physiological model and the Zuker rat that bears a mutation in the leptin receptor, we were able to demonstrate that under DIO conditions the HPT axis is regulated at the central level, but only through the direct pathway of leptin action on TRH neurons. Deiodinase enzymes, which are present in many tissues and responsible for converting thyroid hormones, were not statistically different between lean and DIO animals. These data suggest that the increase in T4/3seen in obese animals is due mostly to central leptin action. We also found that T3feedback inhibition on the prepro-TRH gene is controlled partially by leptin-induced pSTAT3 signaling via the TRH promoter. This interactive relationship between T3and pSTAT3 signaling appears essential to maintain the HPT axis at normal levels in conditions such as obesity.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3