AMPKα is essential for acute exercise-induced gene responses but not for exercise training-induced adaptations in mouse skeletal muscle

Author:

Fentz Joachim1ORCID,Kjøbsted Rasmus1,Kristensen Caroline Maag2,Hingst Janne Rasmus1,Birk Jesper Bratz1,Gudiksen Anders2,Foretz Marc345,Schjerling Peter6ORCID,Viollet Benoit345,Pilegaard Henriette2,Wojtaszewski Jørgen F. P.1ORCID

Affiliation:

1. Section of Molecular Physiology, the August Krogh Centre, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark;

2. Centre of Inflammation and Metabolism, Department of Biology, University of Copenhagen, Copenhagen, Denmark;

3. Institut National de la Sante et de la Recherche Medicale, U1016, Institut Cochin, Paris, France;

4. CNRS, UMR8104, Paris, France;

5. Université Descartes, Sorbonne Paris Cité, Paris, France;

6. Institute of Sports Medicine, Department of Orthopedic Surgery, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark

Abstract

Exercise training increases skeletal muscle expression of metabolic proteins improving the oxidative capacity. Adaptations in skeletal muscle by pharmacologically induced activation of 5′-AMP-activated protein kinase (AMPK) are dependent on the AMPKα2 subunit. We hypothesized that exercise training-induced increases in exercise capacity and expression of metabolic proteins, as well as acute exercise-induced gene regulation, would be compromised in muscle-specific AMPKα1 and -α2 double-knockout (mdKO) mice. An acute bout of exercise increased skeletal muscle mRNA content of cytochrome c oxidase subunit I, glucose transporter 4, and VEGF in an AMPK-dependent manner, whereas cluster of differentiation 36 and fatty acid transport protein 1 mRNA content increased similarly in AMPKα wild-type (WT) and mdKO mice. During 4 wk of voluntary running wheel exercise training, the AMPKα mdKO mice ran less than WT. Maximal running speed was lower in AMPKα mdKO than in WT mice but increased similarly in both genotypes with exercise training. Exercise training increased quadriceps protein content of ubiquinol-cytochrome c reductase core protein 1 (UQCRC1), cytochrome c, hexokinase II, plasma membrane fatty acid-binding protein, and citrate synthase activity more in AMPKα WT than in mdKO muscle. However, analysis of a subgroup of mice matched for running distance revealed that only UQCRC1 protein content increased more in WT than in mdKO mice with exercise training. Thus, AMPKα1 and -α2 subunits are important for acute exercise-induced mRNA responses of some genes and may be involved in regulating basal metabolic protein expression but seem to be less important in exercise training-induced adaptations in metabolic proteins.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3