Changes in Exercise-Induced Gene Expression in 5′-AMP–Activated Protein Kinase γ3–Null and γ3 R225Q Transgenic Mice

Author:

Barnes Brian R.12,Long Yun Chau2,Steiler Tatiana L.12,Leng Ying23,Galuska Dana1,Wojtaszewski Jørgen F.P.4,Andersson Leif56,Zierath Juleen R.12

Affiliation:

1. Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden

2. Department of Surgical Sciences, Karolinska Institutet, Stockholm, Sweden

3. Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China

4. Department of Human Physiology, Copenhagen Muscle Research Centre, Institute of Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark

5. Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala Biomedical Center, Uppsala, Sweden

6. Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala Biomedical Center, Uppsala, Sweden

Abstract

5′-AMP–activated protein kinase (AMPK) is important for metabolic sensing. We used AMPKγ3 mutant–overexpressing Tg-Prkag3225Q and AMPKγ3-knockout Prkag3−/− mice to determine the role of the AMPKγ3 isoform in exercise-induced metabolic and gene regulatory responses in skeletal muscle. Mice were studied after 2 h swimming or 2.5 h recovery. Exercise increased basal and insulin-stimulated glucose transport, with similar responses among genotypes. In Tg-Prkag3225Q mice, acetyl-CoA carboxylase (ACC) phosphorylation was increased and triglyceride content was reduced after exercise, suggesting that this mutation promotes greater reliance on lipid oxidation. In contrast, ACC phosphorylation and triglyceride content was similar between wild-type and Prkag3−/− mice. Expression of genes involved in lipid and glucose metabolism was altered by genetic modification of AMPKγ3. Expression of lipoprotein lipase 1, carnitine palmitoyl transferase 1b, and 3-hydroxyacyl–CoA dehydrogenase was increased in Tg-Prkag3225Q mice, with opposing effects in Prkag3−/− mice after exercise. GLUT4, hexokinase II (HKII), and glycogen synthase mRNA expression was increased in Tg-Prkag3225Q mice after exercise. GLUT4 and HKII mRNA expression was increased in wild-type mice and blunted in Prkag3−/− mice after recovery. In conclusion, the Prkag3225Q mutation, rather than presence of a functional AMPKγ3 isoform, directly promotes metabolic and gene regulatory responses along lipid oxidative pathways in skeletal muscle after endurance exercise.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3