Impact of variable insulinemia and glycemia on in vivo glycolysis and glucose storage in dogs

Author:

Christopher M. J.1,Rantzau C.1,Ward G. M.1,Alford F. P.1

Affiliation:

1. Department of Endocrinology, St. Vincent's Hospital, Fitzroy,Victoria, Australia.

Abstract

To determine the impact of variable plasma insulin concentrations and glycemia on the partitioning of whole body glucose metabolism between glycolysis and glucose storage, we estimated endogenous hepatic glucose production and rates of in vivo glycolytic flux (GF) and glucose storage (GS) in six normal dogs from the generation of plasma tritiated water (3H2O) and [3-3H]glucose specific activity during 150 min of somatostatin euglycemic (E) and hyperglycemic (H) clamps at hypoinsulinemic, basal, intermediate, and high insulin levels. During both E and H clamps, overall rates of GF and GS increased with the rising insulin levels, but the relative contributions to in vivo glucose disposal of GF decreased, whereas GS rose progressively with increasing insulin levels. The relative contribution of GS during H to overall glucose disposal was greater at the lower insulin level. In addition, in absolute terms, GF and GS were significantly higher (P < 0.05) during H than during E at all insulin levels. Moreover, the incremental rise in GF induced by H was equal for the low to intermediate insulin levels tested, independent of the prevailing free fatty acid (FFA) levels. However, when whole body glucose disposal rates were matched, GF and GS rates were independent of the coexisting glycemia, insulin, and/or FFA levels. We conclude that 1) insulin has a major impact on the intracellular fate of infused glucose, with a lesser but significant effect of hyperglycemia per se on these processes; 2) the magnitude of the hyperglycemia-induced increase in GF is independent of the prevailing insulin level from low to intermediate levels; and 3) in vivo GF and GS are dependent on the net rate of glucose uptake into cells but independent of absolute FFA levels or whether glucose uptake is stimulated by raised insulin or glucose levels.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3