Effect of Insulin on Oxidation of Intracellularly and Extracellularly Derived Glucose in Patients With NIDDM: Evidence for Primary Defect in Glucose Transport and/or Phosphorylation but Not Oxidation

Author:

Butler Peter C1,Kryshak Edward J1,Marsh Michael1,Rizza Robert A1

Affiliation:

1. Endocrine Research Unit, Department of Medicine, Mayo Clinic Rochester, Minnesota

Abstract

Insulin-stimulated glucose oxidation is decreased in patients with non-insulin-dependent diabetes mellitus (NIDDM). It is not known whether this decrease is due to a primary defect in the oxidative pathway or is secondary to impaired glucose transport and/or phosphorylation. To address this issue, glucose oxidation was measured under steady-state conditions at low (∼270 pmol) and high (∼17 μmol) insulin concentrations in seven patients with NIDDM and seven healthy nondiabetic subjects matched for sex, age, and obesity. Glucose oxidation was measured simultaneously by indirect calorimetry and the isotopedilution technique. Although glucose oxidation and nonoxidative storage were lower (P < 0.05) in diabetic than nondiabetic subjects during the low- and highdose insulin infusions, oxidation of intracellularly derived glucose, estimated by subtracting the rate of oxidation measured isotopically (i.e., glucose oxidation derived from the extracellular space) from that measured by indirect calorimetry (i.e., total glucose oxidation), did not differ in diabetic and nondiabetic subjects during the low-dose insulin infusion (3.3 ± 0.1 vs. 3.0 ± 0.1 μmol · kg−1 · min−1). Both techniques provided identical estimates of glucose oxidation during the high-dose insulin infusion. Impaired oxidation of extracellularly but not intracellularly derived glucose strongly suggests that the cause of decreased glucose oxidation in patients with NIDDM is secondary to impaired glucose transport and/or phosphorylation rather than a primary abnormality in the oxidative pathway.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3