Quantitation of measurement error with Optimal Segments: basis for adaptive time course smoothing

Author:

Bradley D. C.1,Steil G. M.1,Bergman R. N.1

Affiliation:

1. Department of Physiology and Biophysics, University of SouthernCalifornia Medical School, Los Angeles 90033.

Abstract

We introduce a novel technique for estimating measurement error in time courses and other continuous curves. This error estimate is used to reconstruct the original (error-free) curve. The measurement error of the data is initially assumed, and the data are smoothed with "Optimal Segments" such that the smooth curve misses the data points by an average amount consistent with the assumed measurement error. Thus the differences between the smooth curve and the data points (the residuals) are tentatively assumed to represent the measurement error. This assumption is checked by testing the residuals for randomness. If the residuals are nonrandom, it is concluded that they do not resemble measurement error, and a new measurement error is assumed. This process continues reiteratively until a satisfactory (i.e., random) group of residuals is obtained. In this case the corresponding smooth curve is taken to represent the original curve. Monte Carlo simulations of selected typical situations demonstrated that this new method ("OOPSEG") estimates measurement error accurately and consistently in 30- and 15-point time courses (r = 0.91 and 0.78, respectively). Moreover, smooth curves calculated by OOPSEG were shown to accurately recreate (predict) original, error-free curves for a wide range of measurement errors (2-20%). We suggest that the ability to calculate measurement error and reconstruct the error-free shape of data curves has wide applicability in data analysis and experimental design.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3