Central versus peripheral impact of estradiol on the impaired glucose metabolism in ovariectomized mice on a high-fat diet

Author:

Yonezawa Rika1,Wada Tsutomu2,Matsumoto Natsumi2,Morita Mayuko2,Sawakawa Kanae2,Ishii Yoko3,Sasahara Masakiyo3,Tsuneki Hiroshi1,Saito Shigeru1,Sasaoka Toshiyasu2

Affiliation:

1. Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan;

2. Department of Clinical Pharmacology, University of Toyama, Toyama, Japan; and

3. Department of Pathology, University of Toyama, Toyama, Japan

Abstract

Age-related loss of ovarian function promotes adiposity and insulin resistance in women. Estrogen (E2) directly enhances insulin sensitivity and suppresses lipogenesis in peripheral tissues. Recently, the central actions of E2 in the regulation of energy homeostasis are becoming clearer; however, the functional relevance and degree of contribution of the central vs. peripheral actions of E2 are currently unknown. Therefore, we prepared and analyzed four groups of mice. 1) Control: sham-operated mice fed a regular diet, 2) OVX-HF: ovariectomized (OVX) mice fed a 60% high-fat diet (HF), 3) E2-SC: OVX-HF mice subcutaneously treated with E2, and 4) E2-ICV: OVX-HF mice treated with E2 intracerebroventricularly. OVX-HF mice showed increased body weight with both visceral and subcutaneous fat volume enlargement, glucose intolerance, and insulin resistance. Both E2-SC and E2-ICV equally ameliorated these abnormalities. Although the size of adipocytes and number of CD11c-positive macrophages in perigonadal fat in OVX-HF were reduced by both E2 treatments, peripherally administered E2 decreased the expression of TNFα, lipoprotein lipase, and fatty acid synthase in the white adipose tissue (WAT) of OVX-HF. In contrast, centrally administered E2 increased hormone-sensitive lipase in WAT, decreased the hepatic expression of gluconeogenic enzymes, and elevated core body temperature and energy expenditure with marked upregulation of uncoupling proteins in the brown adipose tissue. These results suggest that central and peripheral actions of E2 regulate insulin sensitivity and glucose metabolism via different mechanisms, and their coordinated effects may be important to prevent the development of obesity and insulin resistance in postmenopausal women.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3