Long-term estrogen deficiency lowers regional blood flow, resting systolic blood pressure, and heart rate in exercising premenopausal women

Author:

O'Donnell Emma,Harvey Paula J.,Goodman Jack M.,De Souza Mary Jane

Abstract

The cardiovascular consequences of hypoestrogenism in premenopausal women are unclear. Accordingly, the influence of menstrual status and endogenous estrogen (E2) exposure on blood pressure (BP), heart rate (HR), and calf blood flow in young (18–35 yr) regularly exercising premenopausal women with exercise-associated menstrual aberrations was investigated. Across consecutive menstrual cycles, daily urinary ovarian steroid levels were analyzed, and the area under the curve was calculated to determine menstrual status and E2exposure. BP, HR, blood flow, vascular conductance, and resistance were measured at baseline and following ischemic calf exercise. Exercising subjects consisted of 14 ovulatory (ExOv), 10 short-term (anovulatory and ≤100 days amenorrhea; ST-E2Def), and 8 long-term (>100 days amenorrhea; LT-E2Def) E2-deficient women. Nine sedentary ovulatory subjects (SedOv) were also studied. All groups were similar in age (24.8 ± 0.7 yr), height (164.8 ± 1.3 cm), weight (57.9 ± 0.9 kg), and body mass index (21.3 ± 0.3 kg/m2). E2-deficient groups had lower ( P < 0.002) E2exposure compared with ovulatory groups. Resting systolic BP, HR, blood flow, and vascular conductance were lower ( P < 0.05) and vascular resistance higher ( P < 0.05) in LT-E2Def compared with both ovulatory groups. Peak ischemic blood flow, vascular conductance, and HR were also lower ( P < 0.05) and vascular resistance higher ( P < 0.05) in LT-E2Def compared with all other groups. Our findings show that exercising women with long-term E2deficiency have impaired regional blood flow and lower systolic BP and HR compared with exercising and sedentary ovulatory women. These cardiovascular alterations represent markers of altered vascular function and autonomic regulation of which the long-term effects remain unknown.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3