Energy availability modulates regional blood flow via estrogen-independent pathways in regularly menstruating young women

Author:

Hutson Mark J.ORCID,O’Donnell EmmaORCID,McConnell KyleORCID,Chauntry Aiden J.ORCID,Blagrove Richard C.ORCID

Abstract

Abstract Purpose This study aimed to investigate the impact of short-term low energy availability (LEA) on vascular function in young, regularly menstruating women. Methods Participants were 19 women, aged 22.9 ± 4.2 years, with body mass index 18–30 kg·m2. They were divided into two groups and completed two conditions in a crossover design: a 3-day control condition (CON) with an energy availability of 45 kcals·kgFFM−1·day−1 and a 3-day LEA condition of 15 kcals·kgFFM−1 day–1. Assessments were conducted during the early follicular phase of the menstrual cycle. Outcome measures included forearm blood flow (FBF), heart rate, blood pressure, arterial stiffness, resting energy expenditure (REE), metabolic blood markers and body composition. Results Significant time-by-condition interactions were found for resting FBF (p = .004), REE (p = .042), triiodothyronine (p = .006), β-hydroxybutyrate (p = .002) and body mass (p < .001). Resting FBF was 1.43 ± 1.01 and 1.31 ± 0.61 (arbitrary units) at pre and post, respectively, in LEA and 1.52 ± 0.7 and 1.76 ± 0.57 at pre and post in CON. The LEA condition led to a decrease in triiodothyronine (pre: 1.54 ± 0.28, post: 1.29 ± 0.27 ng ml−1), REE (pre: 1588 ± 165, post: 1487 ± 160 kcals day−1) and body mass (pre: 61.4 ± 7.5, post: 59.6 ± 7.3 kg). Changes in resting FBF were significantly correlated with changes in REE in the LEA condition (r = 0.53; p = 0.02). Conclusion Short-term LEA modifies regional blood flow and this might contribute to the observed decreased in REE. Findings emphasize the need for careful management of energy availability in populations at risk of LEA.

Funder

American College of Sports Medicine

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3