Abstract
AbstractEnergy availability (EA) is defined as the amount of dietary energy available to sustain physiological function after subtracting the energetic cost of exercise. Insufficient EA due to increased exercise, reduced energy intake, or a combination of both, is a potent disruptor of the endocrine milieu. As such, EA is conceived as a key etiological factor underlying a plethora of physiological dysregulations described in the female athlete triad, its male counterpart and the Relative Energy Deficiency in Sport models. Originally developed upon female-specific physiological responses, this concept has recently been extended to males, where experimental evidence is limited. The majority of data for all these models are from cross-sectional or observational studies where hypothesized chronic low energy availability (LEA) is linked to physiological maladaptation. However, the body of evidence determining causal effects of LEA on endocrine, and physiological function through prospective studies manipulating EA is comparatively small, with interventions typically lasting ≤ 5 days. Extending laboratory-based findings to the field requires recognition of the strengths and limitations of current knowledge. To aid this, this review will: (1) provide a brief historical overview of the origin of the concept in mammalian ecology through its evolution of algebraic calculations used in humans today, (2) Outline key differences from the ‘energy balance’ concept, (3) summarise and critically evaluate the effects of LEA on tissues/systems for which we now have evidence, namely: hormonal milieu, reproductive system endocrinology, bone metabolism and skeletal muscle; and finally (4) provide perspectives and suggestions for research upon identified knowledge gaps.
Funder
Liverpool John Moores University
Publisher
Springer Science and Business Media LLC
Subject
Physiology (medical),Public Health, Environmental and Occupational Health,Orthopedics and Sports Medicine,General Medicine,Public Health, Environmental and Occupational Health,Physiology
Reference106 articles.
1. Areta JL (2020) Case study: resumption of eumenorrhea in parallel with high training load after 4 years of menstrual dysfunction: a 5-year follow-up of an elite female cyclist. Int J Sport Nutr Exerc Metab 1–6
2. Areta JL, Hopkins WG (2018) Skeletal muscle glycogen content at rest and during endurance exercise in humans: a meta-analysis. Sports Med 48:2091–2102
3. Areta JL, Burke LM, Camera DM, West DWD, Crawshay S, Moore DR, Stellingwerff T, Phillips SM, Hawley JA, Coffey VG (2014) Reduced resting skeletal muscle protein synthesis is rescued by resistance exercise and protein ingestion following short-term energy deficit. Am J Physiol-Endocrinol Metab 306:E989–E997
4. Areta JL, Iraki J, Owens DJ, Joanisse S, Philp A, Morton JP, Hallén J (2020) Achieving energy balance with a high‐fat meal does not enhance skeletal muscle adaptation and impairs glycemic response in a sleep‐low training model. Exp Physiol EP088795.
5. Bergström J, Hermansen L, Hultman E, Saltin B (1967) Diet, muscle glycogen and physical performance. Acta Physiol 71:140–150
Cited by
108 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献