Effects of dietary fat types on body fatness, leptin, and ARC leptin receptor, NPY, and AgRP mRNA expression

Author:

Wang Hongqin1,Storlien Len H.1,Huang Xu-Feng1

Affiliation:

1. Metabolic Research Center, Department of Biomedical Science, University of Wollongong, Wollongong, New South Wales 2522, Australia

Abstract

Some, but not all, fats are obesogenic. The aim of the present studies was to investigate the effects of changing type and amount of dietary fats on energy balance, fat deposition, leptin, and leptin-related neural peptides: leptin receptor, neuropeptide Y (NPY), agouti-related peptide (AgRP), and proopiomelanocortin (POMC), in C57Bl/6J mice. One week of feeding with a highly saturated fat diet resulted in ∼50 and 20% reduction in hypothalamic arcuate NPY and AgRP mRNA levels, respectively, compared with a low-fat or an n-3 or n-6 polyunsaturated high-fat (PUFA) diet without change in energy intake, fat mass, plasma leptin levels, and leptin receptor or POMC mRNA. Similar neuropeptide results were seen at 7 wk, but by then epididymal fat mass and plasma leptin levels were significantly elevated in the saturated fat group compared with low-fat controls. In contrast, fat and leptin levels were reduced in the n-3 PUFA group compared with all other groups. At 7 wk, changing the saturated fat group to n-3 PUFA for 4 wk completely reversed the hyperleptinemia and increased adiposity and neuropeptide changes induced by saturated fat. Changing to a low-fat diet was much less effective. In summary, a highly saturated fat diet induces obesity without hyperphagia. A regulatory reduction in NPY and AgRP mRNA levels is unable to effectively counteract this obesogenic drive. Equally high fat diets emphasizing PUFAs may even protect against obesity.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3