Thyroid status and response to endothelin-1 in rat arterial vessels

Author:

McAllister Richard M.1,Luther Kelli L.1,Pfeifer P. Charles1

Affiliation:

1. Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506

Abstract

We have previously reported that changes in thyroid status are associated with significant alterations in skeletal muscle blood flow during exercise and that changes in endothelium-dependent vasodilation may contribute to these blood flow abnormalities. The purpose of this study was to test the hypothesis that altered endothelium-dependent vasoconstriction is also associated with changes in thyroid status. To test this hypothesis, rats were rendered hypothyroid with propylthiouracil (Hypo, n = 14) or hyperthyroid with triiodothyronine (Hyper, n = 14) over ∼3 mo. Treatment efficacy was confirmed by altered ( P < 0.05) citrate synthase activity in several hindlimb skeletal muscles from Hypo and Hyper, compared with that in muscles from euthyroid rats (Eut, n = 12). Vascular rings were prepared from abdominal aortae, and responses to several vasoactive agents were determined in vitro. As found previously, maximal acetylcholine-induced vasorelaxation was modulated by thyroid status (Eut, 47 ± 9; Hypo, 28 ± 6; Hyper, 68 ± 5%; P < 0.05). Contractile responses of vascular rings with intact endothelium to the endothelium-derived constrictor endothelin-1 (ET-1), however, were similar among groups across a range of ET-1 concentrations. In addition, maximal responses [Eut, 3.75 ± 0.47; Hypo, 2.72 ± 0.25; Hyper, 3.22 ± 0.42 g; not significant (NS)] and sensitivities (Eut, 8.12 ± 0.09; Hypo, 8.10 ± 0.06; Hyper, 8.28 ± 0.09 −log M; NS) to ET-1 were similar among groups. If these findings from the conduit-type abdominal aorta extend into resistance vasculature, it appears that changes in endothelium-dependent vasoconstriction do not contribute to skeletal muscle blood flow abnormalities associated with thyroid disease states.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3