ETA receptor blockade attenuates the hypertension but not renal dysfunction in DOCA-salt rats

Author:

Allcock Graham H.1,Venema Richard C.1,Pollock David M.1

Affiliation:

1. Vascular Biology Center, Medical College of Georgia, Augusta, Georgia 30912-2500

Abstract

Endothelin (ET)-1 has potent renal and systemic vasoconstrictor properties, and thus we investigated whether ET-1 plays a role in increasing blood pressure and decreasing renal function in DOCA-salt hypertension. After a right nephrectomy, rats had DOCA or placebo pellets implanted subcutaneously and were given saline or tap water to drink, respectively. Additional groups of rats were given the ETA receptor antagonist A-127722 in their water. Rats were maintained in metabolic cages for monitoring excretory function and food and water intake. Three weeks after surgery, mean arterial pressure (MAP) was recorded in the conscious rats via a carotid artery catheter. As expected, DOCA-salt rats had significantly higher MAP compared with uninephrectomized controls (197 ± 6 vs. 133 ± 3 mmHg). Creatinine clearance, used as an estimate of glomerular filtration rate, was significantly reduced in DOCA-salt rats (2.9 ± 0.4 vs. 6.8 ± 0.3 dl ⋅ day−1 ⋅ 100 g−1 body wt in controls). ETA receptor blockade with A-127722 significantly reduced MAP (156 ± 8 mmHg) but had no effect on creatinine clearance of DOCA-salt-treated rats (2.8 ± 0.3 dl ⋅ day−1 ⋅ 100 g−1 body wt). Plasma ET-1 levels were significantly raised after DOCA-salt treatment (1.4 ± 0.5 pg/ml vs. 0.4 ± 0.1 pg/ml in controls). A-127722 treatment increased circulating ET-1 levels in both placebo (2.3 ± 0.5 pg/ml) and DOCA-salt (5.6 ± 0.7 pg/ml) rats. However, ET-1 mRNA expression in renal cortical and medullary tissue was not affected by either A-127722 or DOCA-salt treatments. Thus ETA receptors appear to play a role in the maintenance and development of DOCA-salt hypertension but not in the accompanying reduction of renal function.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3