Coordinated alteration of hepatic gene expression in fatty acid and triglyceride synthesis in LCAT-null mice is associated with altered PUFA metabolism

Author:

Song Hui,Zhu Liping,Picardo Clive M.,Maguire Graham,Leung Vincent,Connelly Philip W.,Ng Dominic S.

Abstract

Complete lecithin:cholesterol acyltransferase (LCAT) deficiency is associated with fasting hypertriglyceridemia (HTG). We recently reported that, in ldlr−/−×lcat−/−mice, fasting HTG is associated with hepatic triglyceride overproduction in association with an upregulation of the hepatic srebp1 gene and altered expression of its target genes in lipogenesis and gluconeogenesis. We further investigated the role of hepatic polyunsaturated fatty acid (PUFA) metabolism in the modulation of the lipid phenotypes. In the ldlr−/−×lcat−/−mice, using the ldlr−/−×lcat+/+littermate as controls, the hepatic level of cholesterol esters (CE) were reduced by 61.0% whereas the 20:4-CE and 22:6-CE contents were each reduced by >80%. In contrast, the hepatic levels of 20:4- and 22:6-containing phospholipid (PL) species were either unchanged or mildly elevated. Similar alterations of the hepatic PUFA in CE and in PL were also observed in the lcat−/−mice compared with their wild-type controls. In ldlr−/−×lcat−/−mice, hepatic mRNA level was markedly reduced for Δ-6 desaturase ( fads2) (70.2%) and acyl-CoA:cholesterol acyltransferase-2 ( soat2) (57.0%). A similar pattern of gene expression change was also observed in the lcat−/−single-knockout mice. In contrast, the acyl-CoA:diacylglycerol acyltransferase-2 ( dgat2) mRNA level was 1.7-fold upregulated in the double-knockout mice. In summary, we observed coordinated alterations in hepatic expression of the gene for fads2, soat2, and dgat2, resulting in a reduction in total hepatic PUFA pool and differentially in the PUFA-CE pool, in association with an increase in dgat2 gene expression for promoting triglyceride synthesis and secretion. Some of the phenotypes are not readily explained by known mechanisms and may represent novel regulatory pathways.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3