Affiliation:
1. From the Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Abstract
Secondary hyperlipidemia is a major cardiovascular risk factor in individuals with type 2 diabetes. Increased hepatic production of apolipoprotein B (apoB)-containing lipoproteins contributes to the elevated plasma levels, but the mechanism is poorly understood. Recent results have established that microsomal triglyceride transfer protein (MTP) is rate limiting for the assembly and secretion of apoB-containing lipoproteins. To better understand the mechanism of type 2 diabetes-associated hyperlipidemia, we quantified hepatic MTP mRNA levels, hepatic microsomal triglyceride transfer activity, and in vivo triglyceride secretion from the liver in two diabetic mouse models. Obese diabetic (ob/ob) mice had 45% higher (P = 0.006) hepatic MTP mRNA levels, 54% higher (P < 0.0001) microsomal triglyceride transfer activity, and 70% higher (P < 0.0001) in vivo triglyceride secretion rates compared with ob/+ control mice. In contrast, in lean streptozotocin-treated diabetic mice, hepatic MTP mRNA levels were unchanged, whereas microsomal triglyceride transfer activity and in vivo triglyceride secretion rates were marginally decreased. These studies suggest that obesity-induced type 2 diabetes in mice confers increases in hepatic MTP expression and secretion of triglyceride-rich lipoproteins. High blood glucose and altered hepatic expression of sterol regulatory element binding protein genes play a minor role in this diabetic response.
Publisher
American Diabetes Association
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine
Cited by
105 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献