Epinephrine-induced hyperpolarization of islet cells without KATPchannels

Author:

Sieg Andrea,Su Jiping,Muñoz Alvaro,Buchenau Michael,Nakazaki Mitsuhiro,Aguilar-Bryan Lydia,Bryan Joseph,Ullrich Susanne

Abstract

This study examines the effect of epinephrine, a known physiological inhibitor of insulin secretion, on the membrane potential of pancreatic islet cells from sulfonylurea receptor-1 (ABCC8)-null mice (Sur1KO), which lack functional ATP-sensitive K+(KATP) channels. These channels have been argued to be activated by catecholamines, but epinephrine effectively inhibits insulin secretion in both Sur1KO and wild-type islets and in mice. Isolated Sur1KO β-cells are depolarized in both low (2.8 mmol/l) and high (16.7 mmol/l) glucose and exhibit Ca2+-dependent action potentials. Epinephrine hyperpolarizes Sur1KO β-cells, inhibiting their spontaneous action potentials. This effect, observed in standard whole cell patches, is abolished by pertussis toxin and blocked by BaCl2. The epinephrine effect is mimicked by clonidine, a selective α2-adrenoceptor agonist and inhibited by α-yohimbine, an α2-antagonist. A selection of K+channel inhibitors, tetraethylammonium, apamin, dendrotoxin, iberiotoxin, E-4130, chromanol 293B, and tertiapin did not block the epinephrine-induced hyperpolarization. Analysis of whole cell currents revealed an inward conductance of 0.11 ± 0.04 nS/pF ( n = 7) and a TEA-sensitive outward conductance of 0.55 ± 0.08 nS/pF ( n = 7) at -60 and 0 mV, respectively. Guanosine 5′- O-(3-thiotriphosphate) (100 μM) in the patch pipette did not significantly alter these currents or activate novel inward-rectifying K+currents. We conclude that epinephrine can hyperpolarize β-cells in the absence of KATPchannels via activation of low-conductance BaCl2-sensitive K+channels that are regulated by pertussis toxin-sensitive G proteins.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3