PDH activation by dichloroacetate reduces TCA cycle intermediates at rest but not during exercise in humans

Author:

Gibala Martin J.1,Saltin Bengt1

Affiliation:

1. Copenhagen Muscle Research Center, Rigshospitalet, DK-2200 Copenhagen N, Denmark

Abstract

We hypothesized that dichloroacetate (DCA), which stimulates the pyruvate dehydrogenase complex (PDH), would attenuate the increase in muscle tricarboxylic acid cycle intermediates (TCAI) during exercise by increasing the oxidative disposal of pyruvate and attenuating the flux through anaplerotic pathways. Six subjects were infused with either saline (Con) or DCA (100 mg/kg body mass) and then performed a moderate leg kicking exercise for 15 min, followed immediately by intense exercise until exhaustion (Exh; ∼4 min). Resting active fraction of PDH (PDHa) was markedly increased ( P ≤ 0.05) after DCA vs. Con (2.65 ± 0.27 vs. 0.64 ± 0.07 mmol ⋅ min−1 ⋅ kg wet wt−1); however, there were no differences between trials after 1 or 15 min of exercise or at Exh. The sum of five measured TCAI (ΣTCAI; ∼90% of total TCAI pool) was lower ( P ≤ 0.05) after DCA vs. Con at rest (0.78 ± 0.11 vs. 1.52 ± 0.23 mmol/kg dry wt, respectively). However, the net increase in muscle TCAI during the first minute of exercise was higher ( P≤ 0.05) in the DCA trial vs. Con (3.05 ± 0.45 vs. 2.44 ± 0.55 mmol ⋅ min−1 ⋅ kg dry wt−1, respectively), and consequently, the ΣTCAI was not different between trials during exercise. We conclude that DCA reduced TCAI pool size at rest by increasing the flux through PDH and diverting pyruvate away from anaplerotic pathways. The reason for the similar absolute increase in TCAI during exercise is not clear but may be related to 1) an initial mismatch between glycolytic flux and PDH flux that provided sufficient pyruvate for anaplerosis in both trials; or 2) a transient inhibition of PDH flux during the DCA trial due to an elevated resting acetyl-CoA-to-CoASH ratio, which augmented the anaplerotic flux of carbon during the rest-to-work transition.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3