Author:
Mourtzakis M.,Graham T. E.,González-Alonso J.,Saltin B.
Abstract
Muscle glutamate is central to reactions producing 2-oxoglutarate, a tricarboxylic acid (TCA) cycle intermediate that essentially expands the TCA cycle intermediate pool during exercise. Paradoxically, muscle glutamate drops ∼40–80% with the onset of exercise and 2-oxoglutarate declines in early exercise. To investigate the physiological relationship between glutamate, oxidative metabolism, and TCA cycle intermediates (i.e., fumarate, malate, 2-oxoglutarate), healthy subjects trained (T) the quadriceps of one thigh on the single-legged knee extensor ergometer (1 h/day at 70% maximum workload for 5 days/wk), while their contralateral quadriceps remained untrained (UT). After 5 wk of training, peak oxygen consumption (V̇o2peak) in the T thigh was greater than that in the UT thigh ( P < 0.05); V̇o2peak was not different between the T and UT thighs with glutamate infusion. Peak exercise under control conditions revealed a greater glutamate uptake in the T thigh compared with rest (7.3 ± 3.7 vs. 1.0 ± 0.1 μmol·min−1·kg wet wt−1, P < 0.05) without increase in TCA cycle intermediates. In the UT thigh, peak exercise (vs. rest) induced an increase in fumarate (0.33 ± 0.07 vs. 0.02 ± 0.01 mmol/kg dry wt (dw), P < 0.05) and malate (2.2 ± 0.4 vs. 0.5 ± 0.03 mmol/kg dw, P < 0.05) and a decrease in 2-oxoglutarate (12.2 ± 1.6 vs. 32.4 ± 6.8 μmol/kg dw, P < 0.05). Overall, glutamate infusion increased arterial glutamate ( P < 0.05) and maintained this increase. Glutamate infusion coincided with elevated fumarate and malate ( P < 0.05) and decreased 2-oxoglutarate ( P < 0.05) at peak exercise relative to rest in the T thigh; there were no further changes in the UT thigh. Although glutamate may have a role in the expansion of the TCA cycle, glutamate and TCA cycle intermediates do not directly affect V̇o2peak in either trained or untrained muscle.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献