Author:
Davidoff Amy J.,Mason Meredith M.,Davidson Michael B.,Carmody Marybeth W.,Hintz Kadon K.,Wold Loren E.,Podolin Deborah A.,Ren Jun
Abstract
We recently identified cardiomyocyte dysfunction in the early stage of type 2 diabetes (i.e., diet-induced insulin resistance). The present investigation was designed to determine whether a variety of clinically relevant interventions are sufficient to prevent and reverse cardiomyocyte dysfunction in sucrose (SU)-fed insulin-resistant rats. Subsets of animals were allowed to exercise (free access to wheel attached to cage) or were treated with bezafibrate in drinking water to determine whether these interventions would prevent the adverse effects of SU feeding on cardiomyocyte function. After 6–8 wk on diet and treatment, animals were surgically prepared to assess whole body insulin sensitivity (intravenous glucose tolerance test), and isolated ventricular myocyte mechanics were evaluated (video edge recording). SU feeding produced hyperinsulinemia and hypertriglyceridemia, with euglycemia, and induced characteristic whole body insulin resistance. Both exercise and bezafibrate treatment prevented these metabolic abnormalities. Ventricular myocyte shortening and relengthening were slower in SU-fed rats (42–63%) compared with starch (ST)-fed controls, and exercise or bezafibrate completely prevented cardiomyocyte dysfunction in SU-fed rats. In separate cohorts of animals, after 5 wk of SU feeding, animals were either switched back to an ST diet or given menhaden oil for an additional 7–9 wk to determine whether the cardiomyocyte dysfunction was reversible. Both interventions have previously been shown to have favorable metabolic effects, and both improved myocyte mechanics, but only the ST diet reversed all indications of cardiomyocyte dysfunction induced by SU feeding. Thus phenotypic changes in cardiomyocyte mechanics associated with early stages of type 2 diabetes were found to be both preventable and reversible with clinically relevant treatments, suggesting that the cellular processes contributing to this dysfunction are modifiable.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献