Lactational metformin exposure programs offspring white adipose tissue glucose homeostasis and resilience to metabolic stress in a sex-dependent manner

Author:

Carlson Zach1ORCID,Hafner Hannah1,Mulcahy Molly2,Bullock Kaylie3,Zhu Allen1,Bridges Dave2ORCID,Bernal-Mizrachi Ernesto4ORCID,Gregg Brigid1ORCID

Affiliation:

1. Department of Pediatrics, Division of Diabetes, Endocrinology and Metabolism, University of Michigan Medicine, Ann Arbor, Michigan

2. Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan

3. Department of Infectious Diseases, Department of Internal Medicine, University of Michigan Medicine, Ann Arbor, Michigan

4. Division of Endocrinology, Diabetes and Metabolism, University of Miami, Miller School of Medicine, Miami, Florida

Abstract

We previously demonstrated that exposing mouse dams to metformin during gestation results in increased beta-cell mass at birth and increased beta-cell insulin secretion in adult male offspring. Given these favorable changes after a gestational maternal metformin exposure, we wanted to understand the long-term metabolic impact on offspring after exposing dams to metformin during the postnatal window. The newborn period provides a feasible clinical window for intervention and is important for beta-cell proliferation and metabolic tissue development. Using a C57BL/6 model, we administered metformin to dams from the day of birth to postnatal day 21. We monitored maternal health and offspring growth during the lactation window, as well as adult glucose homeostasis through in vivo testing. At necropsy we assessed pancreas and adipocyte morphology using histological and immunofluorescent staining techniques. We found that metformin exposure programmed male and female offspring to be leaner with a higher proportion of small adipocytes in the gonadal white adipose tissue (GWAT). Male, but not female, offspring had an improvement in glucose tolerance as young adults concordant with a mild increase in insulin secretion in response to glucose in vivo. These data demonstrate long-term metabolic programming of offspring associated with maternal exposure to metformin during lactation.

Funder

NIH/NIDDK

VA

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3