Overexpression of human adiponectin in transgenic mice results in suppression of fat accumulation and prevention of premature death by high-calorie diet

Author:

Otabe Shuichi,Yuan Xiaohong,Fukutani Tomoka,Wada Nobuhiko,Hashinaga Toshihiko,Nakayama Hitomi,Hirota Naotoshi,Kojima Masayasu,Yamada Kentaro

Abstract

Adiponectin, a physiologically active polypeptide secreted by adipocytes, shows insulin-sensitizing, anti-inflammatory, and antiatherogenic properties in rodents and humans. To assess the effects of chronic hyperadiponectinemia on metabolic phenotypes, we established three lines of transgenic mice expressing human adiponectin in the liver. When maintained on a high-fat/high-sucrose diet, mice of two lines that had persistent hyperadiponectinemia exhibited significantly decreased weight gain associated with less fat accumulation and smaller adipocytes in both visceral and subcutaneous adipose tissues. Macrophage infiltration in adipose tissue was markedly suppressed in the transgenic mice. Expression levels of adiponectin receptors were not altered in skeletal muscle or liver. Circulating levels of endogenous adiponectin were elevated, whereas fasting glucose, insulin, and leptin levels were reduced compared with control mice. In the hyperadiponectinemic mice daily food intake was not altered, but oxygen consumption was significantly greater, suggesting increased energy expenditure. Moreover, high-calorie diet-induced premature death was almost completely prevented in the hyperadiponectinemic mice in association with attenuated oxidative DNA damage. The transgenic mice also showed longer life span on a conventional low-fat chow. In conclusion, transgenic expression of human adiponectin blocked the excessive fat accumulation and reduced the morbidity and mortality in mice fed a high-calorie diet. These observations may provide new insights into the prevention and therapy of metabolic syndrome in humans.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 118 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3