Androgen sensitivity of prostate epithelium is enhanced by postnatal androgen receptor inactivation

Author:

Simanainen Ulla,McNamara Keely,Gao Yan Ru,Handelsman David J.

Abstract

Postnatal inactivation of epithelial androgen receptor (AR) in prostate epithelial AR knockout (PEARKO) mice results in hindered differentiation but enhanced proliferation of epithelial cells. As this resembles the precancerous proliferative atrophy of human prostates with undifferentiated but intensively replicating epithelial cells, we utilized the PEARKO mice to characterize the epithelial response to castration-induced involution with a focus on identifying the potential role of stromal AR and responsiveness of the androgen-deprived epithelia to the aromatizable androgen testosterone (T) or its nonaromatizable metabolite dihydrotestosterone (DHT). PEARKO and littermate control mice were orchidectomized at 8 wk of age and treated 2 wk later with subdermal implantation of 1-cm Silastic tubing filled with T or DHT for a week. Following castration, the prostatic involution and epithelial apoptosis did not significantly differ between control (intact AR) and PEARKO (only stromal AR) males, demonstrating that prostate epithelial involution following castration is mediated primarily via stromal AR-dependent apoptotic signals. Androgen replacement (T/DHT) for 7 days induced significant growth and epithelial proliferation in all prostate lobes in both control and PEARKO, but full regrowth was observed only in controls treated with T. In PEARKO, prostate androgen (T and DHT) treatment induced significant epithelial cell “shedding” into the lumen, with T treatment resulting in acinar disorganization, cyst formation, and aberrant epithelial structures, described as a “gland within a gland.” These data suggest that epithelial AR inactivation during postnatal prostate development sensitizes prostate epithelial cells to paracrine signaling mediated by stromal AR activity leading to indirectly androgen-induced epithelial hyperproliferation and formation of epithelial hyperplastic cysts by aromatizable androgens.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3