Affiliation:
1. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
2. University of Chinese Academy of Sciences, Beijing, China
3. Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, China
4. Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
Abstract
Insulin, the most potent anabolic hormone, is critical for somatic growth and metabolism in vertebrates. Type 2 diabetes, which is the primary cause of hyperglycemia, results from an inability of insulin to signal glycolysis and gluconeogenesis. Our previous study showed that double knockout of insulin receptor a ( insra) and b ( insrb) caused β-cell hyperplasia and lethality from 5 to 16 days postfertilization (dpf) (Yang BY, Zhai G, Gong YL, Su JZ, Han D, Yin Z, Xie SQ. Sci Bull (Beijing) 62: 486–492, 2017). In this study, we characterized the physiological roles of Insra and Insrb, in somatic growth and fueling metabolism, respectively. A high-carbohydrate diet was provided for insulin receptor knockout zebrafish from 60 to 120 dpf to investigate phenotype inducement and amplification. We observed hyperglycemia in both insra−/− fish and insrb−/− fish. Impaired growth hormone signaling, increased visceral adiposity, and fatty liver were detected in insrb−/− fish, which are phenotypes similar to the lipodystrophy observed in mammals. More importantly, significantly diminished protein levels of P-PPARα, P-STAT5, and IGF-1 were also observed in insrb−/− fish. In insra−/− fish, we observed increased protein content and decreased lipid content of the whole body. Taken together, although Insra and Insrb show overlapping roles in mediating glucose metabolism through the insulin-signaling pathway, Insrb is more prone to promoting lipid catabolism and protein synthesis through activation of the growth hormone-signaling pathway, whereas Insra primarily acts to promote lipid synthesis via glucose utilization.
Funder
Youth innovation promotion association of CAS
National Natural Science Foundation of China (NSFC)
Chinese academy of science
China agriculture research system
Fund project in state key laboratory of freshwater ecology and biotechnology
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献