Long-term calorie restriction reduces proton leak and hydrogen peroxide production in liver mitochondria

Author:

Hagopian Kevork,Harper Mary-Ellen,Ram Jesmon J.,Humble Stephen J.,Weindruch Richard,Ramsey Jon J.

Abstract

Calorie restriction (CR) without malnutrition increases maximal life span in diverse species. It has been proposed that reduction in energy expenditure and reactive oxygen species (ROS) production could be a mechanism for life span extension with CR. As a step toward testing this theory, mitochondrial proton leak, H2O2production, and markers of oxidative stress were measured in liver from FBNF1rats fed control or 40% CR diets for 12 or 18 mo. CR was initiated at 6 mo of age. Proton leak kinetics curves, generated from simultaneous measures of oxygen consumption and membrane potential, indicated a decrease in proton leak after 18 mo of CR, while only a trend toward a proton leak decrease was observed after 12 mo. Significant shifts in phosphorylation and substrate oxidation curves also occurred with CR; however, these changes occurred in concert with the proton leak changes. Metabolic control analysis indicated no difference in the overall pattern of control of the oxidative phosphorylation system between control and CR animals. At 12 mo, no significant differences were observed between groups for H2O2production or markers of oxidative stress. However, at 18 mo, protein carbonyl content was lower in CR animals, as was H2O2production when mitochondria were respiring on either succinate alone or pyruvate plus malate in the presence of rotenone. These results indicate that long-term CR lowers mitochondrial proton leak and H2O2production, and this is consistent with the idea that CR may act by decreasing energy expenditure and ROS production.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3