Effects of short- and medium-term calorie restriction on muscle mitochondrial proton leak and reactive oxygen species production

Author:

Bevilacqua Lisa,Ramsey Jon J.,Hagopian Kevork,Weindruch Richard,Harper Mary-Ellen

Abstract

Reductions in cellular oxygen consumption (V̇o2) and reactive oxygen species (ROS) production have been proposed as mechanisms underlying the anti-aging effects of calorie restriction (CR). Mitochondria are a cell's greatest “sink” for oxygen and also its primary source of ROS. The mitochondrial proton leak pathway is responsible for 20–30% of V̇o2 in resting cells. We hypothesized that CR leads to decreased proton leak with consequential decreases in V̇o2, ROS production, and cellular damage. Here, we report the effects of short-term (2-wk, 2-mo) and medium-term (6-mo) CR (40%) on rat muscle mitochondrial proton leak, ROS production, and whole animal V̇o2. Whole body V̇o2 decreased with CR at all time points, whereas mass-adjusted V̇o2 was normal until the 6-mo time point, when it was 40% lower in CR compared with control rats. At all time points, maximal leak-dependent V̇o2 was lower in CR rats compared with controls. Proton leak kinetics indicated that mechanisms of adaptation to CR were different between short- and medium-term treatments, with the former leading to decreases in protonmotive force (Δp) and state 4 V̇o2 and the latter to increases in Δp and decreases in state 4 V̇o2. Results from metabolic control analyses of oxidative phosphorylation are consistent with the idea that short- and medium-term responses are distinct. Mitochondrial H2O2 production was lower in all three CR groups compared with controls. Overall, this study details the rapid effects of short- and medium-term CR on proton leak, ROS production, and metabolic control of oxidative phosphorylation. Results indicate that a reduction in mitochondrial V̇o2 and ROS production may be a mechanism for the actions of CR.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3