Evaluation of a mathematical model of diabetes progression against observations in the Diabetes Prevention Program

Author:

Hardy Thomas1,Abu-Raddad Eyas1,Porksen Niels1,De Gaetano Andrea2

Affiliation:

1. Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; and

2. Consiglio Nazionale delle Ricerche, Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti”, Rome, Italy

Abstract

The seminal publication of the Diabetes Prevention Program (DPP) results in 2002 has provided insight into the impact of major therapies on the development of diabetes over a time span of a few years. In the present work, the publicly available DPP data set is used to calibrate and evaluate a recently developed mechanistic mathematical model for the long-term development of diabetes to assess the model's ability to predict the natural history of disease progression and the effectiveness of preventive interventions. A general population is generated from which virtual subject samples corresponding to the DPP enrollment criteria are selected. The model is able to reproduce with good fidelity the observed time courses of both diabetes incidence and average glycemia, under realistic hypotheses on evolution of disease and efficacy of the studied therapies, for all treatment arms. Model-based simulations of the long-term evolution of the disease are consistent with the transient benefits observed with conventional therapies and with promising effects of radical improvement of insulin sensitivity (as by metabolic surgery) or of β-cell protection. The mechanistic diabetes progression model provides a credible tool by which long-term implications of antidiabetic interventions can be evaluated.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3