A malonyl-CoA fuel-sensing mechanism in muscle: effects of insulin, glucose, and denervation

Author:

Saha A. K.1,Kurowski T. G.1,Ruderman N. B.1

Affiliation:

1. Diabetes and Metabolism Unit, Boston University Medical Center,Massachusetts 02118, USA.

Abstract

Increases in the concentration of malonyl-CoA in skeletal muscle have been observed in the KKAy mouse, an obese rodent with high plasma insulin and glucose levels [Saha et al. Am. J. Physiol. 267 (Endocrinol. Metab. 30): E95-E101, 1994]. To assess whether insulin and glucose directly regulate malonyl-CoA in muscle, soleus muscles from young rats were incubated with insulin and glucose at various concentrations, and their content of malonyl-CoA was determined. In addition, the effect on malonyl-CoA of denervation and electrically induced muscle contractions was assessed. The concentration of malonyl-CoA in the soleus, taken directly from a rat fed ad libitum, was 2.0 +/- 0.2 nmol/g. In muscles incubated for 20 min in a medium devoid of added insulin and glucose, the concentration was decreased to 0.8 +/- 0.2 nmol/g. When the medium contained 0.5, 7.5, or 30 mM glucose, malonyl-CoA levels were 1.3 +/- 0.1, 1.8 +/- 0.1, or 2.4 +/- 0.2 nmol/g, respectively, in the absence of insulin and 1.7 +/- 0.1, 4.6 +/- 0.3, or 5.5 +/- 0.6 nmol/g in its presence (10 mU/ml). Compared with its level in a control muscle, the concentration of malonyl-CoA was increased threefold in the soleus 6-8 h after denervation and remained twofold higher for > or = 48 h. In contrast, muscle contractions induced by sciatic nerve stimulation, in vivo, acutely decreased the concentration of malonyl-CoA by 30-35%. The results indicate that insulin and glucose, and probably contractile activity, regulate the concentration of malonyl-CoA in muscle.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 115 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3